Petr Maly
Czech Academy of Sciences, Czech Republic
Title: Protein binders mimicking surface glycoprotein epitopes recognized by broadly neutralizing antibodies as a new platform for identification of peptide-prints as tools for development of more protective vaccines
Biography
Biography: Petr Maly
Abstract
Carbohydrates-based immunogens are generally less effective in generation of long-lasting antibody responses and neutralizing epitopes of surface glycoproteins are poorly immunogenic. Therefore, proteins mimicking glycan epitopes represent a promising alternative for development of more protective vaccines. Highly complex combinatorial libraries derived from scaffolds of small and robust protein domains represent an excellent tool for the identification of protein binders mimicking surface glycopeptide epitopes of viruses or bacteria that are recognized by broadly neutralizing antibodies. We use our established concept of a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) and, in combination with ribosome display, we target broadly neutralizing(bn) IgG to identify unique binding candidates recognizing antigen-binding-domain of the tested bn-IgG. In our proof-of-concept study we target glycan epitopes carried by gp120/gp41 protein complex of the HIV-1 Env.ABD variants as potential (glyco)peptide mimetics are currently being characterized for the stimulation of HIV-1 gp120-specific neutralizing antibody response. Thus, ABD-derived recombinant mimotopes could serve as a useful molecular clue for generation of more efficient HIV-1 vaccine and provide a platform for development of other viral or bacterial disease-preventing vaccines.
The project was supported by Czech Ministry of Health grant AZV MZ 15-32198A and Czech Ministry of Education, Youth, and Sport grant CEREBIT CZ.02.1.01/0.0/0.0/16_025/0007397.